Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy.

نویسندگان

  • Mario Borgwardt
  • Martin Wilke
  • Thorsten Kampen
  • Sven Mähl
  • Manda Xiao
  • Leone Spiccia
  • Kathrin M Lange
  • Igor Yu Kiyan
  • Emad F Aziz
چکیده

Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injection Kinetics and Electronic Structure at the N719/TiO2 Interface Studied by Means of Ultrafast XUV Photoemission Spectroscopy

The method of transient XUV photoemission spectroscopy is developed to investigate the ultrafast dynamics of heterogeneous electron transfer at the interface between the N719 ruthenium dye complex and TiO2 nanoparticles. XUV light from highorder harmonic generation is used to probe the electron density distribution among the ground and excited states at the interface after its exposure to a pum...

متن کامل

Time-resolved photoelectron spectroscopy to probe ultrafast charge transfer and electron dynamics in solid surface systems and at metal-molecule interfaces.

Photoelectron spectroscopy (PES) is a versatile tool, which provides insight into electronic structure and dynamics in condensed matter, surfaces, interfaces and molecules. The history of PES is briefly outlined and illustrated by current developments in the field of time-resolved PES. Our group's research is mostly aimed at studying ultrafast processes and associated lifetimes related to elect...

متن کامل

Dynamics of Interfacial Charge Transfer States and Carriers Separation in Dye-Sensitized Solar Cells: A Time-Resolved Terahertz Spectroscopy Study

Electron injection from a photoexcited molecular sensitizer into a wide-bandgap semiconductor is the primary step toward charge separation in dye-sensitized solar cells (DSSCs). According to the current understanding of DSSCs functioning mechanism, charges are separated directly during this primary electron transfer process, yielding hot conduction band electrons in the semiconductor and positi...

متن کامل

Light-induced relaxation dynamics of the ferricyanide ion revisited by ultrafast XUV photoelectron spectroscopy.

Photoinduced charge transfer in transition-metal coordination complexes plays a prominent role in photosynthesis and is fundamental for light-harvesting processes in catalytic materials. However, revealing the relaxation pathways of charge separation remains a very challenging task because of the complexity of relaxation channels and ultrashort time scales. Here, we employ ultrafast XUV photoem...

متن کامل

Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2.

In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT) to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin) and acceptor (TiO2 nano-crystallite) levels, static optical excitation spectra are simulated u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016